
Internet of Things-based Temperature Tracking
System

Amir Atabekov, Marcel Starosielsky, Dan Chia-Tien Lo, and Jing (Selena) He
Department of Computer Science

Kennesaw State University
Kennesaw, USA

{aatabeko, mstarosi}@students.kennesaw.edu; {dlo2, jhe4}@kennesaw.edu

Abstract—The work described in this paper consists of a
temperature tracking system that follows a Client-Server
architecture. A RaspberryPi, a System-on-a-Chip (SoC) device,
is responsible for sensing the temperature and streaming it to a
server; the readings then are displayed in a mobile android
application. For this system, a python application was
developed to sense and stream the temperature, a servlet was
developed to read and store the temperature in a SQLite
database, and a mobile Android application was developed to
read and display the temperature readings from the server.
The initial versions of the project used the SoC device as a
server (storing temperature readings into a local SQLite
database), and both the SoC device and the mobile device
needed to be connected in a local area network. However, the
project was further developed to separate the server
responsibilities from the SoC device. The system now supports
user authentication, and both devices are connected through
the Internet. This implementation allows the temperature
readings to be viewed and displayed anytime from anywhere in
the world since the database is hosted on a server which can be
accessed over the internet. Also, this solution allows multiple
SoC devices to stream temperatures to the server, to different
mobile clients using the same database. The Android client
application was also implemented to graphically show the
temperature readings recorded by RaspberryPi using RESTful
architecture. Moreover, an alert message notification was
implemented in Android application so that a user is notified
whenever the temperature reading reaches the preset
threshold. On the other hand, the smart chair system has
brilliant commercial prospects, which can be helpful to build
health care products with the help of wearable sensors,
intelligent refrigerator/oven temperature tracking system and
etc.

Keywords— RaspberryPi; Temperature Tracking; Python;
Internet of Things, RESTful API.

I. INTRODUCTION

The Internet of Things (IoT) involves connecting objects to
internet so that the information related to the objects can be
accessed at anytime from anywhere. The motivation of this
project is to develop a device that makes temperature
readings available over internet. We developed a system that
helps address overheating issues that can occur in a home
environment, or at a server warehouse. Heat generated by
electronic devices must be dissipated in order to prevent
premature failure. Although electronic devices have heat-

dissipating mechanisms, sometimes they are not enough to
effectively solve the issue.

Most electronic devices include a cooling system that
expels heated air out while letting fresh air move in.
However, when such a device is in an environment with
insufficient airflow, the surrounding air gets hotter and
further increases the temperature of the environment,
causing the equipment to overheat.

On smart devices, such as a server cluster, there are
sensors that will detect when the device is overheating and
will shut itself down to prevent damage to its inside
components. However, these sensors will track the
temperature of the device only and will not be aware of the
environment's temperature (i.e. server closet), where the
problem might reside. The temperature tracking system we
developed can be used to provide information that will help
administrators or users diagnose the problem, and remediate
it before the device takes drastic measures (such as turning
itself off).

Furthermore, this system can also be used in a home
environment. Most houses have a thermostat that controls
the air conditioner to make sure the room is always at the
desired temperature. However, this will only work
effectively at rooms where the thermostat is present. At
rooms without a thermostat, the system can be used to spot
the difference between the desired temperature and the
actual temperature of the room; the user can then use this
information to try to remediate the problem by increasing
airflow in air conditioning ducts in rooms that have uneven
air conditioning.

The device used to sense the temperature is the
Raspberry Pi as show in Fig. 1, and a circuit had to be
assembled and connected through its GPIO. The Raspberry
Pi was chosen for this project due to its small size and vast
availability of third party sensors, extensions and accessible
APIs. In this system, the following components were
assembled and connected to the Raspberry Pi (shown in Fig.
2):

� Temperature sensor TMP36
� MCP3008 interface chip
� Breadboard
� Wi-Fi dongle
� GPIO to breadboard interface.

2015 IEEE 39th Annual International Computers, Software & Applications Conference

0730-3157/15 $31.00 © 2015 IEEE

DOI 10.1109/COMPSAC.2015.261

493

The TMP36 sensor was hardwired into the MCP3008
interface chip, which was responsible for providing digital
input to the Raspberry Pi. The Plotly Python API and Scripts
[1] were used and modified to poll and stream the
temperature readings to a servlet. The servlet reads the
information streamed from the python application and stores
it in a SQLite database on the device. In order to successfully
stream the temperature, the python application streams the
temperature under a username and password (different SoC
devices from different users stream the readings to the same
server), the servlet then authenticates the credentials before
storing the temperature readings; readings are only stored if
the authentication was successful. Another servlet was also
implemented to process the requests from the client
application, and provide the temperature readings in JSON
format.

Fig 1. RaspberryPi System-On-a-Chip

Fig 2. Components of Temperature Tracking System

An Android mobile application was developed as the
client side, to obtain the temperature data for from the server;
the application obtains the data in JSON format wirelessly,
and once the data is obtained, the Android application
displays a graph showing the temperature readings of any
given day. Also, the application has the option to set a
temperature threshold, and if this threshold is reached, the
application will notify the user even if the application is
running in the background.

The remaining of the paper is organized as follows. In
Section II, we discuss some related works. Section III
describes the high level implementation of the project and
describes the tools used. Section IV describes the actual
implementation with design diagrams of both the server and
client application. Section V discusses the performance
evaluation of the system. We conclude the paper and discuss
some future extensions of the system in Section VI.

II. RELATED WORKS

Internet of Things (IoT) has emerged as a new internet
paradigm, which allows various physical entities in the world
to connect with each other. The observed or generated

information of these entities have a great potential to provide
useful knowledge across different service domains, such as
building management, energy-saving systems, surveillance
services, smart homes, smart cities, etc. [2 - 5]. IoT was
coined in 1999 by Kevin Ashton, who is the cofounder of
Auto-ID center at the Massachusetts Institute of Technology
(MIT) [6]. Now, IoT represents a technological revolution,
which includes several advanced technologies, such as
identification and contactless data exchange (RFID [7], and
Near Field Communication (NFC) [8]), wireless sensor
networks [9], short-range wireless communication (ZigBee
[10] and Bluetooth [11]), and universal mobile accessibility
(Wi-Fi hotspots [12] and cellular networks [13]).

In this project, we built a temperature tracking system, a
case study of IoT applications. One related temperature-
tracking project has been completed by Boonsawat et al. in
[14], where Arduino microcontroller board [15] was used.
The project consisted of several Arduino boards which
transmitted the temperature to the master node with ZigBee
shields. The RaspberryPi [16] can serve a similar purpose,
however unlike Arduino, the RaspberryPi can also serve as a
stand alone web server with Tomcat application server on the
local network. This can obviate the need to use third party
RESTful Web APIs [17] if the data is to be accessed locally.
Hence, in this project we adopt RaspberryPi using RESTful
architecture to implement temperature-tracking system.

III. SYSTEM/NETWORK MODEL AND ENVORONMENT

A. System/Network Model:
The initial versions of the project had the SoC device
working as a server, and both the SoC device and Android
mobile device needed to be connected on the same local area
network, as the Fig. 3 shows.

However, the project was further developed beyond our
initial plans. The system now supports user authentication,
devices are connected through the internet and temperature
readings are viewed and displayed from a server which is
accessed over the internet anytime from anywhere in the
world, as Fig. 4 shows.

In Fig. 4, the python application streams the readings to a
java servlet. The servlet then authenticates the credentials
provided by the python application’s post request and stores
the data in the SQLite database. On the client side, the
android application requests the temperature readings from
another java servlet, providing the credentials that the user
typed at the log-in screen. The servlet authenticates the
credentials and sends the temperature readings in JSON
format to the android application. The android application
retrieves new temperature readings at every 3 minutes (live
readings), and readings are collected by the Raspberry Pi at
every minute.

B. Tools and Environment:
The android application was developed using the Java
programming language, using the GraphView library [18] to
draw the graphs that display the temperature readings. And
the JSON library in Java [19] was used to send and parse the

494

temperature readings. Android Studio was used to develop
the android application, and the Eclipse IDE was used to
develop the Servlet Java application. Previously, the
temperature readings were polled at every few seconds and
the python application would run for unlimited time.
However this approach is not reliable because if an error
occurs during execution of the script, the temperature
readings are terminated. This issue was fixed by establishing
a timed execution of the python application, where the
execution is controlled by the Linux Kernel of the
Raspberry Pi (Raspbian OS [20]), a web-based interface for
Unix system administration was used (Webmin [21])) to run
the python application at every minute (Cron Job [22]).

Fig 3. The original version of the system.

IV. METHODOLOGY AND IMPLEMENTATION

Our solution consists of two parts; the first part is the Web
Service that runs in the cloud. The Web Service was
implemented as a Java Servlet and runs on Tomcat
application container. The second part consists of an Android
Application, which acts as a client for the web service. Table
1 describes all system requirements for the project.

Fig 4. The new version of the system.

A. Design of the Web Service

The web service was developed as five separate Java
Servlets, which run on Tomcat application container as

depicted in Fig. 5. Servlet named “NewRecord” accepts a
POST request with user credentials and temperature reading
as parameters and stores it into a SQLite database. Servlet
“RaspberryPi” outputs all the temperature readings in JSON
format. Servlets “Authenticate” and “CreateUser” are used
to authenticate and register new users of the web service.

Table 1. System Requirements
Requirement Description
Read temperature from
sensor

The python application running in the
Raspberry Pi will collect data from
the temperature sensor

Send temperature
readings to our server
and insert into SQLite
database

The python application running in the
Raspberry Pi will connect to our
server in the cloud and POST a
temperature reading into a SQLite
database

Read the data from
SQLite and output it in
JSON format

Java web service that reads the
temperature readings stored in the
SQLite database and output them in
JSON format.

Retrieve and parse
JSON data

The android application retrieves and
parses the temperature readings from
Web service in JSON format.

Displaying and scaling
the graph with
temperature readings

The android application displays a
graph with readings of the current
day. Scaling is done automatically
based on the range of data available.

View graphs from other
days with previous/next
buttons

The android application allows the
user see the temperature graphs from
other days, if there’s data available in
that day.

Login screen and
progress bar of data
transmission between
android application and
server

The android application allows the
user to log in using his e-mail address
and specify the server’s IP address.
After the login screen, a progress bar
is shown to display the status of data
transmission.

Authentication/Registra
tion of users

The mobile application will let new
users create an account which can be
used with our web service.
Afterwards, they can authenticate
with their credentials.

Temperature threshold
warnings

The application will let the user set a
temperature threshold and will warn
the user if it’s reached.

Web service
authentication

The web service will authenticate the
user first, before either retrieving the
data, or inserting a new record into
the database.

B. Design of the Web Service

The web service was developed as five separate Java
Servlets, which run on Tomcat application container as
depicted in Fig. 5. Servlet named “NewRecord” accepts a
POST request with user credentials and temperature reading
as parameters and stores it into a SQLite database. Servlet
“RaspberryPi” outputs all the temperature readings in JSON
format. Servlets “Authenticate” and “CreateUser” are used
to authenticate and register new users of the web service.

495

C. JSON output from the Web Service
When “RaspberryPi” servlet is requested all the temperature
readings are displayed in JSON format as described in Fig.
6. The Servlet outputs a JSON array called “temperature”.
The array consists of objects, each of which contains three
key-value pairs. The first key-value pair is “date” which
represents the date the temperature was recorded, the second
key-value pair represents the actual temperature in
Fahrenheit and the last pair represents the ID of the record.

Fig 5. The web servlet class UML diagram.

"temperature": [

{"date": "2014-10-06 03:05:24.025496", "temp": "74.3", "id": 1},

{"date": "2014-10-06 03:05:29.160119", "temp": "74.8", "id": 2},

{"date": "2014-10-06 03:05:34.310643", "temp": "74.3", "id": 3},

{"date": "2014-10-06 03:05:39.470450", "temp": "74.8", "id": 4}]

Fig 6. JSON format of temperature readings.

D. Design of the Android Application

Fig. 7 depicts the high level UML class diagram of the
android application. JsonTask class is an asynchronous task,
which periodically polls the server for updates, which it then
passes to TemperatureActivity class. TemperatureActivity
class uses GraphView library to display properly formatted
graph of the temperature throughout the day.

E. Layout Screens and Technical Details:
To display the temperature readings, the GraphView library
[18] was used. Readings for every day were stored in a
Hashmap data structure, and then passed to the API
methods. Swipe gestures using the standard android library
were implemented, which trigger events that cause the graph
to change according to the previous or next day available;
this is done by searching the Hashmap data structure for the
next or previous available day, and then calling the
GraphView API methods to display a new graph (as shown
in Fig. 8). When the button Change Scale is pressed, the
graph is re-displayed with a new scale (either Fahrenheit or
Celsius). The Data flow of the application is summarized in
Fig. 9.

Fig 8. Application displaying the hourly graph

Fig 9. Data Flow Diagram

As Fig. 10 shows, when the button “Set Threshold” is
pressed, a dialog appears where the user can chose a
maximum limit for the temperature. If that limit is reached,
then a warning will appear for the user warning that the
threshold has been reached (shown in Fig. 11). The
component used to scroll through the threshold options is a

496

NumberPicker, where the user can swipe up and down to
choose the desired value. Also, the user can reset the
threshold by selecting the option “Reset” and then pressing
the ok button.

Fig 7. UML Class Diagram.

V. PERFORMANCE EVALUATION

The temperature tracking system has the disadvantage that it
needs Internet connection in order to view the latest
readings. However, to access the achieved readings from
previous days internet is not required. The android
application is one of the most interesting components, filled
with interesting features, where the following are the most
distinguishable features:

� Temperature threshold:
The android application allows the user to set a maximum
limit for the temperature. If that limit is reached, the
application will display a message informing him/her that
the temperature has reached the limit.
� Refresh graph with latest readings:

The android application re-loads the graph representing
the readings of the current day, with the latest data
available.

Fig 10. Displaying number picker to set the threshold

Fig 11. Displaying the threshold reached message

� Temperature conversion:
The android application allows the user to press a button,
which will convert the temperature from Fahrenheit to
Celsius, and display the new graph. Also, since all the
functionalities were developed in time, the following
functionalities were also developed to further improve the
mobile application’s performance, reliability and user
comfort.
� Users connect to Raspberry Pi through internet:
A hosted Web Service was developed so that multiple
users are able to access the temperature readings from the
Raspberry Pi through the Internet without the previous
limitation of being on the same network as Android
client. Also, the python application was modified to
stream the temperature to the hosted web service, rather
than storing it in a local database.

497

� User authentication in Web service:
Since access to the readings is provided through the
internet, user authentication is essential. The Web service
authenticates the data first before sending the temperature
readings to the client application. Temperature readings
are streamed under different user names, which allow the
database at the hosted server to store readings for
multiple users, and yet each client application only
displays the readings belonging to the username informed
at the initial log-in screen.
� Swipe gestures
To navigate through the days where each graph is shown,
the user can now swipe left and right, instead of using the
previous/next buttons.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we would like to point out that we, as a team,
have gained invaluable knowledge in hardware design,
prototyping and python scripting. After developing this
project we have identified a simpler and cheaper alternative
to RaspberryPi, which is Texas Instruments (TI) LaunchPad,
i.e., MSP-EXP432P401R [23]. This LaunchPad is low
powered but with high performance controller. In future we
are interested to develop the same project based on TI
LaunchPad instead of RaspberryPi, just so that we can gain
more knowledge in hardware prototyping and further cutting
the budget and energy consumption. By using a different
board, we would only have to re-write the code for the TI
LaunchPad to send Http POST request to our Web Service.
The architecture as it stands now is very robust and uses
open protocols for data exchange such as JSON. This makes
modifying or using a different board much easier in future.

ACKNOWLEDGMENT

This work is funded in part by the Kennesaw State
University the Office of the Vice President for Research
(OVPR) Pilot/Seed Grant, by the College of Science and
Mathematics Interdisciplinary Research Opportunities
(IDROP) Program, by the Department of Computer Science
Mini-Research Grant, and supported by the National
Science Foundation under Grant Number 1438858. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

1. Assembly tutorial and Plotly Python API sample Scripts:
https://plot.ly/raspberry-pi/tmp36-temperature-
tutorial/#hookup (accessed in April 2015).

2. D. Bandyopadhyay, and J. Sen, Internet of things:
Applications and challenges in technology and
standardization, Wireless Personal Communication, 58,
49–69, 2011.

3. R.V. Kranenburg, E. Anzelmo, A. Bassi, D. Caprio, S.
Dodson, and M. Ratto, The internet of things. In
Proceedings of 1st Berlin Symposium on Internet and
Society, Berlin, Germany, October, 2011.

4. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
Internet of Things (IoT): A vision, architectural elements,
and future directions, Future Generation Computing
System, 29, 1645–1660, 2013.

5. O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H.
Sundmaeker, A. Bassi, and P. Doody, Internet of things
strategic research roadmap, In Internet Things-Global
Technology Social Trends, River Publishers, pp. 9–52,
2011.

6. K. Ashton, That “Internet of Things” Thing, RFiD J. 2009,
22, 97 – 114, 2009.

7. R. Want, An introduction to RFID technology, Pervasive
Comput, 5, 25–33, 2006.

8. T.G. Zimmerman, Personal area networks: Near-field
intrabody communication. IBM System Journal, 35, 609–
617, 1996.

9. L. Eschenauer, and V.D. Gligor, A key-management
scheme for distributed sensor networks. In Proceedings of
the 9th ACM Conference on Computer and
Communications Security, Washington, DC, pp. 41–47,
November, 2002.

10. P. Baronti, P. Pillai, V.W. Chook, S. Chessa, A. Gotta, and
Y.F. Hu, Wireless sensor networks: A survey on the state
of the art and the 802.15. 4 and ZigBee standards,
Computer Communication, 30, 1655–1695, 2007.

11. Bluetooth, S.I.G. Specification of the Bluetooth System,
version 1.1. Available online: http://www. bluetooth.com
(accessed in April 2015).

12. G. Anstasi, M. Conti, E. Gregori, and A. Passarella,
802.11 power-saving mode for mobile computing in Wi-Fi
hotspots: limitations, enhancements and open issues,
Wireless Networking, 14, 745–768, 2008.

13. M.K. Karakayali, G.J. Foschini, and R.A. Valenzuela,
Network coordination for spectrally efficient
communications in cellular systems, Wireless
Communication, 13, 56–61, 2006.

14. V. Boonsawat, J. Ekchamanonta, K. Bumrungkhet, and S.
Kittipiyakul, XBee Wireless Sensor Networks for
Temperature Monitoring, the Second Conference on
Application Research and Development (ECTI-CARD
2010), Chon Buri, Thailand, May 2010.

15. Arduino, http://arduino.cc/ (accessed in April 2015).
16. RaspberryPi, http://www.raspberrypi.org/ (accessed in

February 2015).
17. RESTful Web APIs, http://restfulwebapis.com/ (accessed

in April 2015).
18. Graphview: Android Java API library, http://android-

graphview.org/ (accessed in April 2015).
19. JSON for Java API library, http://www.json.org/java

(accessed in April 2015).
20. Raspbian, http://www.raspbian.org/ (accessed in April

2015).
21. Webmin, http://www.webmin.com/ (accessed in April

2015).
22. Cron Job,

http://www.unixgeeks.org/security/newbie/unix/cron-
1.html (accessed in April 2015).

23. Texas Instruments LaunchPad,
http://www.ti.com/ww/en/launchpad/launchpads-
msp430.html#tabs (accessed in April 2015).

498

